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Summary

This article presents the study of a U-statistic process arising in the problem of testing
exponentiality versus nonexponential increasing failure rate average (IFRA) distributions. Weak
convergence of this U-statistic process to a Gaussian process is proved and a functional of
this process is proposed as the test statistic. It is shown that this test statistic has desirable
asymptotic properties and also a higher asymptotic relative efficiency compared to some other
(existing) tests in the literature. Results of a Monte Carlo study carried out to obtain power
estimates for small samples are presented.
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1. Introduction
Among the various nonparametric classes of life distributions, reflecting

specific ageing properties, the class of increasing failure rate average (IFRA)

distributions has gained considerable importance. It is the smallest class of



i
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life distributions containing the exponential distribution which is closed under
the formation of coherent systems and its elements also describe life lengths
experiencing damage from random shocks under fairly general assumptions (see

Barlow and Proschan, 1975). This class is definid as follows.

Definition 1.1: A life distribution F' belongs to the IFRA class if and only if

F(bz) > [F(2)]’, forall0<b<1, z>0.

Let X;,---,X, be a random sample of size n from a continuos IFRA
life distribution function F. Tests for the exponentiality (H,) versus the
nonexponentiality (H;) of F have been proposed by several authors (see,
for example, Barlow and Campo, 1975, Bergman, 1977 and Klefsjo, 1983).
Using Definition 1.1 of IFRA life distributions, and by considering ép =

1 % (1 b)—
/ / ( 1_ )F (bz)dF(z)db as a measure of deviation of F' from exponen-
0o Jo

tiality towards IFRA alternatives, Ahmad(1980) proposed a test statistic

1 1+0b

Aln=1) iien

where I(A) denotes the indicador function of the set A. Deshpande(1983) pro-
posed a class of statistics {J,,(0) : 0 < b < 1}, where

1

Jn(b) = alh— 1)

Z I(JX, > b_Xj),

1<i#5<n

based on the parameter

OO0

]\fF(_b):/ F(bax)dF(z).
0

; 1 1
Since Mp(b) = - under Hy and M p(h) > b1 under Hy, viewing Mp(b) as
a measure of devation of F' from exponentiality towards the IFRA alternatives,
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we reject Hy in favor of H; for large values of J,(b). Using Hoeffding’s(1948)
results on U—statistics, both Ahmad(1980) and Deshpande(1983) established the
asymptotic normality of U,, and J,(b) respectively and computed the asymp-
totic relative efficiencies (ARE’s) of their tests relative to the tests proposed
by Hollander and Proschan(1972) and Bickel and Doksum(1969). The choice
of optimal values of b in J,(b) is discussed in Tiwari, Jammalamadaka and
Zalkikar(1989) and in Bandyopadhyay and Basu(1989).

In this paper, we look at {J,(0);0 < b < 1} as a U-statistic process in b,
rather than as a set of test statistics J,(b) for each b. U-statistic process in a
very general setup has been discussed by Noland and Pollard(1987), but their
interest has no direct bearing on this application. In Section 2 we study the
weak convergence of this process. In Section 3 we use the results of Section
2, to derive the asymptotic distribution of a test statistic that is independent
of b, for testing the exponentiality of F. Asymptotic relative efficiency (ARE)
calculations and Monte Carlo power estimates of the proposed test for small

samples are presented in Section 4.

2. The J,(b) process

Note that, for b € [0, 1],

- 1 1 C(X4)
Jn(b):-i-l-m Z I(X(' >b), (2.1)

1<i<j<n (1)

where X3y < --- < X(, are the order statistics of the random sample
Xy, -+ ,Xn. Since F is continuous, there are no ties with probability 1 and
it is clear from (2.1) that the knowledge of a sample path of the J,(b) process
is equivalent to knowing the n(n — 1)/2 ratios of the observations Xi,---, X,
which are less than 1. The remaining n(n s 1)/2 ratios bigger than 1 can
be obtained by taking reciprocals, and exactly n ratios are equal to 1. Hence

{J(b):0 < b < 1} as a process on D|0, 1], the space of functions on [0, 1] that are
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right continuos and have left hand limits, contains all the information about the

ratios (%%, ig: e Eﬁ), a maximal invariant statistic under the groups of
scale transformations. Consequently the asymptotic distribution of the statistic
proposed in Section 3 as well as that of any other scale invariant test statistic
can be obtained from the weak convergence of the J,(b) process as these are
functionals of this process. However, for some of these test statistics it may
be more convenient to use other methods. The weak convergence of the J,,(b)

process proved in Appendix A is stated in the following theorem.

Theorem 2.1. The sequence of processes {n*/2(J,(b) — Mp(b)):0 < b < 1}
converges weakly to a Gaussian process with mean 0 and covariance kernel

given by

[ IFE) + FO)[F(E)  + F(baz)]dF(x) — 4Mp(b) Mp(bs),
I{(b]_,bg): Ogbl,bg S 1
0 0.W.

(2.2)

3. One sample IFRA test
Given a random sample X, -- , X, from a continuos IFRA life distribution
F, we develop a test procedure for testing
Hy : F(bz) = [F(x)]® for all > 0 and for all 0 < b < 1,

vVersus

Hy:F(bz) > [F(2)]® for all 2 > 0 and for all 0 < b < 1,

with strict inequality for some 2. To measure the deviation of F' from Hy towards

H,, consider the parameter (cf. Zalkikar, 1988)

A(F) = fol fom F(bx)dF(x)db

= / 1 Mp(b)db (3.1)
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which under Hyp has the value {n2 and is larger than fn2 under H,. Substi-
tuting the empirical distribution function F, for F and noting that A(ﬁ’n) =

1
/ Mg (b)db is asymptotically equivalent to
0 n

1
iy :] Jn(b)db,
0

we propose T’, as a test statistc for testing Hy versus H;, and reject Hy in favor
of H for large values of T,,. The asymptotic normality of T}, follows from the
application of Theorem 2.1 and the continuous mapping Theorem (cf. Billingsley,

1969, p.30) and is given by

Theorem 3.1. /n(T, — A(F)) has limiting N(0,0?) distribution, where o is
given by

i 1
a?=:[./.Kan¢gdmd@ (3.2)
0 0

and I (b1, bs) is the covariance kernel given by (2.2).

~ When F is exponential (with unspecified parameter i), 1t follows from

1 -
(3.1) that A(F) = / E%Tdb = (n2 and from (2.2) that
0
2(1 + bybo) byby by
K(by,b2)=1- -
(01, b0) (b1 +1)(ba+1)  biba+Dbi+by biba+b+1
b ' 1

_ ,0< bybs < 1. 3.3
b+ batl B rhFl ks i)

Substituting (3.3) in (3.2) we get 02 = 0.012 and we have the following.

corollary.

Corollary 3.2. Under the null Ilypdtllesis of exponentiality \/n(T, — (n2) has
the N(0,0.012) limiting distribution.

It follows from Corollary 3.2 that the sequence of test {T,} is consistent

against all continuous (nonexponential) IFRA alternatives.
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The computational form of the test statistic T;, is

1 X; .
T, = —— min(l, —) (3.4)
n n(n - ].) 15;5?1 ‘\J
In terms of the order statistics X(yy, -+ , X(y) of the random sample Xy, - - s X,

Remark 3.1: From (3.4) note that T}, is a U-statistic with kernel

Bz me) = mnin (1, :;—1),2:1,:59 >0 (3.5)
for an estimable parameter P(U < X/Y) where U, X and Y are nonnegative,
independent r.v.’s with X and Y having the same distribution function F', and U
is the uniform r.v. on [0,1]. Therefore, one can use the theory of U-statistics to
give an alternative proof of Theorem 3.1. This is given in Appendix B. However,
it is clear that not every functional, ¥(J, (b)), of the U-statistic process J,(b)
can be written as a U-statistic. Thus, the simple alternative proof we have
provided in Appendix B for T, cannot be carried through, for example, when
dealing with sup, J,,(b).

4. Efficiency and power computations

"

arbitrary positive constant and Fp_ is exponential with scale parameter 1. The

Let {Fp,} be a sequence of alternatives with 6,, = 6y + , where @ is an’

extended U-statistics theorem ensures that the standard regularity conditions
in Noether’s(1955) theorem (cf. Randles and Wolfe, 1979, p. 147) are satisfied
for T, U, and J,(b).
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The ARE of the T;, with respect to (w.r.t) J,(b) is given by

m " ok
PE(Ta, Ju(b)) = [ ﬂﬁn(g}?)} G(Zb) (4.1)
F y VO

where 02 and o®(b) are asymptotic variances of n'/2T), and n!/ 2J.(b) under
Hj respectively, and A(l)(ﬂo)(]’tlg)(l}; 8)) is the derivative with respect to 6
of A(0)(Mp(b;8)), the asymptotic mean of T),(J,,(b)) under Fp, evaluated at
0 = 6p. Note that pp(T,, J. (D)) is the square of the ratio of the efficacies of T,
and J,(b) tests. For the computations of ARE we consider the Weibull family
of alternatives with d.f. Fyp(z) = 1—e=*,2 > 0,6 > 1. Then from (4.1),
pF(Tn, Jo(b)) is given by

0.129 2 o2(b)
PE(Tns Ju(B)) = [—bé‘nb/(b—i— 1)2] 0.012 8)
where
b 1 2(1-10) 2b 4
2(p) = 1 B _ :
R e I T o 5T O Sl /WO

The efficacy of the test .J,(0.44) is maximum among the test {J,,(b) : 0 < b < 1}
for Weibull alternatives (see Tiwari, Jammalamadaka and Zalkikar, 1989, or
Bandyopadhyay and Basu, 1989). From (4.2), the ARE of the T, test with
respect to the .J,,(0.44) test is 1.0225. Similar. calculations for U, yield the
ARE of T, test with respect to the U, test as 4.762. These ARE’s indicate the
higher efficiency of T},. Small sample performance of T, also points in the same
direction, as seen from the following tables. Table 4.1 gives Monte Carlo powers
of the T}, test for sample size varing from n = 5 to n = 15 for Weibull a.nd.linear
failure rate alternatives. The level of significance used is o = 0.05. Table 4.2
enables us to compare the T), test w.r.t. J,(0.44) test in terms of power of the

test. Here the alternatives are Weibull and the sample size is 15. The simulation
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study carried out for T, shows that for samples of size n > 10, it is

normal approximation for T,.

Table 4.1
Monte Carlo Powers of Ty, test with a = 0.05.

VOL 4, 1990

safe to use

n/6 1.25 1.5 B: =

Dk

5 0.112 0.182 0.398 0.579
-(0.103) (0.126) (0.131) (0.135)

7 0.112 0.215 0.455 0.726
(0.163) (0.184) (0.185) (0.194)

9 0.180 0.337 0.690 0.903
(0.191) (0.196) (0.196) (0.249)

11 0.180 0.337 0.767 0.939
(0.195) (0.202) (0.245) (0.268)

13 0.180 0.424 0.846 0.979
(0.195) (0.223) (0.262) (0.294)

15 0.180 0.465 0.905 0.990
(0.206) (0.227) ) (0.262) (0.328)

Table 4.2

Monte Carlo Powers of T, and J,,(0.44) tests with
o = 0.05,n = 15 and Wetbull alternatives

Test/6 | 1.25 1.5 2 2.5

T 0.180 0.465 0.905 0.990

Z; (0.44) 0.180 0.435 0.865 0.982
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In Table 4.1, the values without brackets correspond to Weibull alternatives .

with Fyp(z) = 1= exp(—z%),z > 0,0 > 1 and the values in brackets correspond

to Linear Failure rate alternative with Fy(z) = 1 —exp(—z — gmz), :1:‘> 0,6 > 0.

5. Discussion

The U-statistic process considered in this paper contains all the information
about ratios of the observations in the sample and provides a test statistic for
testing exponentiality against IFRA alternatives. This test statistic has limiting
normal distribution and the simulation results show that a sample of size 10 or
more is adequate for the usé of asymptotic results. The usefulness of this new
test procedure lies in the fact that while using this procedure one does not
face the problém of choosing a test from the class of tests as is the case with
.Deshpande’s tests, and the test performs reasonably well in terms of ARE and

power.

Appendix A
The proof of Theorem 2.1 is given through the following lemmas.

Lemma A.1. Let J:(b):= J,(b) — Mp(b). For any fixed by.--- ,b; € [0,1] the
(finite dimensional) joint distribution of {n*/2J%(b;),i =1,2,---,1} converges

to l-variate normal distribution, where the variance matrix, &, is given by (A.2).

Proof: For any fixed aj,--- ,a it is sufficient to show that n!/2 3 a;Ji(b:)
is asymptotically normal. For this we use the projection of J(b) on the class of

sums of i.i.d r.v.’s given by
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Va(h) = % [%(F(%) + F(bX;) - MF(b))]

= > (X)),

J=1

say. Note that (cf. Randles and Wolf, 1979, p.83)

! ! ¢
nE !Z a3 () = Y aiVa(b:)
i=1 1=1
! : :
< nlE 1:2 aZ(J:(b;) — Vu(bi))‘z] —0asn— o0 (A.1)
i=1

Singe ¥ = Ei=1aiUbi(Xj),j = 1,--:,n are i.id r.v.’s with mean 0 and fi-
nite variance, the Lindberg-Levy version of the central limit theorem gives the
asymptotic normality of n!/2 Z};l Y; = nl/? Zi = a;V,(b;) and hence from
(A.1) that of n/2 S>_ a;J2(b;). It is easy to verify that the variance-covariance

matrix of n!/2J%(b;),i=1,--- ,lis

5 = (K (b1,by) (4.2)
where K(b;,b;) is as defined in (2.2). o

Lemma A.2. The family of probability measures induced on D|[0,1] by the
processes {n1/2J%(b);0 < b < 1} is tight.

Proof: Since Mp(b) = 1 — Mp(b) is a nondecreasing continuous function of
b € [0,1], by Theorem 15.6 of Billingsley (1968, p. 128) it is sufficient to show
that

nE (|75(bs) = Jr(b)l175(82) = Ta(b1)]) < (Mip(bs) = Mp(b1)) ™",
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for b, < by < bs, where a > % By Cauchy-Schwartz inequality
nE(|J5(bs) = J5(b2)|| T3 (b2) = T3 (1)) -

< n{E (T3 (bs) — J2(52)) 2 E(T5(bs) = T2 (b1)) 1112
(A.3)

Since J,,(b3) — J,(b2) is a U-statistic, by a standard result from the theory of
U-statistic (cf. Denker, 1985)

B (J;(bs) — Jn(b2))* < % (M p(bs) = Mp(bs)) (1~ Mp(bs) + Mp(bs)) (A4)
and
E (;(b2) - Jn(b1))? < % (Mp(b2) = Mp(b1)) (1= Mp(bs) + Mp(by)) (A.5)

Combining (A.3), (A.4) and (A.5) yields

nE (|J5(b3) — I (b2)]| T (b2) = Ji(01)])
< 2 [(Mp(bs) = Mp(bs)) (Mp(by) — Mp(by)) (1 = M p(bs)

FM (b)) (1 = M p(bs) + M p(br))] (4.6)
Note that
(1= Mp(bs)+M p(b2))(1 — Mp(bs) + Mp(by))

P - — o 2
< (M r(bs) = Mr(0))? + (M r(ss) - Mr(br))"”]
(A7)

for some 6 > 0. Substituting (A.'T). in (A.6) and simplifying gives

nE([J;(bs) — Ja(b2)|| T3 (b2) — T (b1)])?
< e(Mp(bs) — Mp(by)),

where ¢ > 0 is a constant, and o = (1 + min(é, 1)). 0

=
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Appendix B

Alternative proof of Theorem 3.1: From Hoeffding’s(1948) results, the dis-
tribution of /n(T, — A(F)) is asymptotically normal with mean 0 and variance
4 (;, where

(1 = E (¢3(X1)) — (A(F))?, (B.1)

$1(X1) = E[h*(21,22)], and h* is a symmetric version of & in (3.5) given by

h* (z1,%2) = % [min (1, i—;) + min (1, %)] (B.2)

Using the fact that min(1, 3*) = E(I(U < 1)), where U is a uniform r.v. on.
[0,1], and (B.2) in (B.1) and simplifying gives

d1(z) = %Ll {F (%) +F(uw1)}du.

and hence,

E (¢:( X1 f / {F 3 F_(ux)} dF(z)du = A(F) (B.3)

(¢>1(X1 [ / ] f {F +'F‘(ux)} {F (§)+F(m)}dp(a;)dudu]

(B.4)
Using (B.3)and (B.4) in (B.1) givens 4¢; = o with ¢? definid by (3.2).
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